
Forensic Technology Inc.

5757 Cavendish blvd

Cote St-Luc QC H4W 2W8

Software Engineering:Software Engineering:
Develop Software PreciselyDevelop Software Precisely
and Efficientlyand Efficiently
By Michel Daigle
Development Manager
Presented at CUSEC, March 8th, 2002

 Present our company and products

 Our development structure history

 Our software engineering process

 Discuss the benefits

 Questions & Answers

Presentation OutlinePresentation Outline

Company ProfileCompany Profile
 Founded in 1992

 Over 220 employees

 International company: Offices in
Canada, Ireland, South Africa , USA

 Products installed in 26 Countries

ISO 9001 Certified

Our MissionOur Mission……
Crime solving through innovative technology:

• Ballistic Correlation and Information System
• Firearm Control System
• Criminalistics Laboratory Information System
• Forensic Pathology Information System
• Evidence Tracking and Management System

Our Products...Our Products...
ForensicForensic Solutions Solutions

Development Structure HistoryDevelopment Structure History
• I’ve got a good idea !
• Some customers told me they might be interested
• Let starts programming now!
• We’ll write the documentation at the end of the

project (why now ?)
• The version 1.0 will include 100 % of the desired

functionality… we’ll be the best product of the
market!

Development Structure HistoryDevelopment Structure History
• We did not document customer’s needs enough;
• We have developed our versioning standard during

development;
• We worked 24/7 for the version 1.0… we worked 3 times the

effort that we had planned;
• The version 1.0 was too big and did not necessarily fulfill 100%

of the customer’s expectation;
• We were a small team… our documentation was incomplete:

• It was long and tedious to add new member to the
development team;

• We had to rush to complete documentation for customer’s
quality review;

Development Structure HistoryDevelopment Structure History

We’ve been extremely lucky:
• Our initial idea was a technology breakthrough in law

enforcement;
• We have negotiated excellent sales’ contracts;
• The product has been a technology and a commercial

success.

• With our past experience and with our company rapid
growth (40 to 220 employees in 14 months) we have
decided to implement a strong development structure:

• We have adopted the Rational Unified Process (RUP)
method

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
1. Develop Software Iteratively:

• Asses risk and attack it through demonstrable progress
• Produce frequent executable releases that enable

continuous end user involvement and feedback
• Development team stays focused on producing results,

and frequent status checks help ensure that the project
stays on schedule

• An iterative approach also makes it easier to
accommodate tactical changes in requirements, features
or schedule

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
2. Manage Requirements:

• Develop an approach that elicit, organize, and document
required functionality and constraints;

• Track and document tradeoffs and decisions;
• Capture and communicate business requirements;
• Use a set of pre-establish forms/document templates to

that has been proven to be an excellent way to capture
functional requirements

• They provide coherent and traceable threads through
both the development and the delivered system

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
3. Use Component-Based Architectures:

• Focus on early development and baselining of a robust
executable architecture, prior to committing resources for
full-scale development;

• Design a resilient architecture that is flexible,
accommodates change, is intuitively understandable,
and promotes more effective software reuse.

• Components are non-trivial modules, subsystems that
fulfill a clear function;

• Use a well-defined architecture, either ad hoc, or in a
component infrastructure such as the Internet, CORBA,
and COM, for which an industry of reusable components
is emerging.

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
4. Visually Model Software:

• Visually model your software to capture the structure and
behaviour of architectures and components;

• Hide the details and write code using "graphical building
blocks."

• Visual abstractions helps to communicate different aspects of
the software;

• Allow to see how the elements of the system fit together and
make sure that the building blocks are consistent within the
code;

• maintain consistency between a design and its
implementation;

• Promote unambiguous communication.
Use the industry-standard Unified Modeling Language (UML)

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
5. Verify Software Quality:

• Poor application performance and poor reliability are
common factors which dramatically inhibit the
acceptability of today's software applications;

• Hence, quality should be reviewed with respect to the
requirements based on reliability, functionality,
application performance and system performance;

• Quality assessment must be built into the process, in all
activities, involving all participants, using objective
measurements and criteria

• Must not treated as an afterthought or a separate activity
performed by a separate group.

• DO IT AT EVERY ITERATION !

Effective Deployment 6 Best PracticesEffective Deployment 6 Best Practices
6. Control Changes to Software:

• Ability to manage change--making certain that each
change is acceptable

• Being able to track changes--is essential in an environment
in which change is inevitable

• Establish secure workspaces for each developer by
providing isolation from changes made in other
workspaces and by controlling changes of all software
artefacts (e.g., models, code, documents, etc

• Bring a team together to work as a single unit by
describing how to automate integration and build
management.

• Iterative process = GOOD VERSIONING PRACTICES

Iterative Model Graph (RUP)Iterative Model Graph (RUP)

Iterative Model Graph (RUP)Iterative Model Graph (RUP)

• The horizontal axis:
Represents time and shows the dynamic aspect of
the process as it is enacted, and it is expressed in
terms of cycles, phases, iterations, and milestones.

• The vertical axis:
Represents the static aspect of the process: how it
is described in terms of activities, artefacts, workers
and workflows.

Two Dimensions

Iterative ModelIterative Model

• Inception phase
• Elaboration phase
• Construction phase
• Transition phase

• The software lifecycle is broken into cycles, each
cycle working on a new generation of the product.

• The Rational Unified Process divides one
development cycle in four consecutive phases:

Inception PhaseInception Phase
• A Vision document: a general vision of the core project's

requirements, key features, and main constraints;
• An use-case model (10%-20% complete);
• A project glossary (may optionally be partially expressed as a

domain model);
• A business case, which includes business context, success

criteria (revenue projection, market recognition, and so on),
and financial forecast;

• A risk assessment analysis;
• A project plan, showing phases and iterations;
• A business model, if necessary;
• One or several prototypes.

Inception PhaseInception Phase

• Stakeholder concurrence on scope definition and
cost/schedule estimates.

• Requirements understanding as evidenced by the fidelity of
the primary use cases.

• Credibility of the cost/schedule estimates, priorities, risks,
and development process.

• Depth and breadth of any architectural prototype that was
developed.

• Actual expenditures versus planned expenditures.

Lifecycle Objectives

Elaboration PhaseElaboration Phase
• A use-case model (at least 80% complete) - all use cases and

actors have been identified, and most use-case descriptions have
been developed.

• Supplementary requirements capturing the non functional
requirements and any requirements that are not associated with a
specific use case.

• A Software Architecture Description.
• An executable architectural prototype.
• A revised risk list and a revised business case.
• A development plan for the overall project, including the coarse-

grained project plan, showing iterations" and evaluation criteria for
each iteration.

• An updated development case specifying the process to be used.
• A preliminary user manual (optional… but, sooner the better!).

Elaboration PhaseElaboration Phase

• Is the vision of the product stable?
• Is the architecture stable?
• Does the executable demonstration show that the major

risk elements have been addressed and credibly resolved?
• Is the plan for the construction phase sufficiently detailed

and accurate?
• Do all stakeholders agree that the current vision can be

achieved if the current plan is executed to develop the
complete system, in the context of the current architecture?

• Is the actual resource expenditure versus planned
expenditure acceptable?

Lifecycle Objectives

Construction PhaseConstruction Phase
•The software product integrated on the adequate platforms.
•The user manuals.
•A description of the current release.

Lifecycle Objectives

• Is this product release stable and mature enough to be
deployed in the user community?

• Are all stakeholders ready for the transition into the
user community?

• Are the actual resource expenditures versus planned
expenditures still acceptable?

Transition PhaseTransition Phase
• "Beta testing" to validate the new system against user

expectations
• Parallel operation with a legacy system that it is replacing
• Conversion of operational databases
• Training of users and maintainers
• Roll-out the product to the marketing, distribution, and sales

teams

Transition PhaseTransition Phase
Lifecycle Objectives

• Achieving user self-supportability
• Achieving stakeholder concurrence that deployment

baselines are complete and consistent with the
evaluation criteria of the vision

• Achieving final product baseline as rapidly and cost
effectively as practical

Product Release!Product Release!

• Is the user satisfied?
• Are the actual resources expenditures versus

planned expenditures still acceptable?

Iterations and VersioningIterations and Versioning
• Each phase in the Process can be further broken

down into iterations.
• An iteration is a complete development loop resulting

in a release (internal or external) of an executable
product, a subset of the final product under
development, which grows incrementally from
iteration to iteration to become the final system.

• Therefore, through phases, it is vital to manage and
synchronize documents and software versions.

Benefits of an Iterative ApproachBenefits of an Iterative Approach
Compared to the traditional waterfall process, the
iterative process has the following advantages:

• Risks are mitigated earlier;
• Change is more manageable ;
• Higher level of reuse;
• The project team can learn along the way;
• Better overall quality;
• The profits are higher;
• The customer is satisfied and… will bring you repeat

business as well as good references.

What to ReadWhat to Read……
• Dean Leffingwell, Don Widrig, Managing Software

Requirements, Addison-Wesley, 2000, 491p.
• Alistair Cockburn, Writing Effective Use Cases, Addison-

Wesley, 2001, 270p.
• Alan W. Brown (ed.), Component-Based Software

Engineering, IEEE Computer Society, Los Alamitos, CA,
1996, pp.140.

• Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and
Gunnar Övergaard, Object-Oriented Software
Engineering-A Use Case Driven Approach, Wokingham,
England, Addison-Wesley, 1992, 582p.

??
Forensic Technology, Inc.

Michel Daigle
michel.daigle@fti-ibis.com

www.forensictechnologyinc.com

B•A•R•D, IBIS, Gunsights, MatchPoint, VSN, and CrimeSeen are registered trademarks of Forensic Technology Incorporated. Oracle
and the On Oracle logo are trademarks of Oracle Corporation. Windows 95, Windows 98, Windows ME, Windows 2000, Windows
CE are trademarks of Microsoft; Microsoft is a registered trademark of Microsoft Corporation in the United States and other countries.
LimsLink is a registered trademark of Labtronics Incorporated. Rational, Rational Unified Process, RUP are trademark of the Rational
Software Corporation.

QuestionsQuestions

