
Software Engineering is
Multi-Disciplinary:
Impact on
Design for Change

W. Morven Gentleman

Dalhousie University

Morven.Gentleman@dal.ca



Software Engineering is

 the collection of practices and theory,
tools and techniques that make the
development and support of software a
viable business
 Software design is part of Software

Engineering, but only a small part



SE is multi-disciplinary

 The what of SE: any software product has
a domain of application. Most disciplines,
indeed almost every domain of human
endeavour, need supporting software

 The how of SE: many disciplines
contribute to the effective production and
support of software



Typical issues for What

 Domain specific science and technology

 Domain specific resources

 Domain specific standards

 Domain regulatory requirements

 Culture of the domain



Typical issues for how

 Reduced development cost

 Earlier time-to-market

 Higher quality

 Better predictability of product and
process

 Broader applicability, amortization over
larger marketplace



Examples

 Cognitive psychology, HCI and tool
adoption

 Sociology, CSCW and support of long-
lived systems

 Management science, software process,
and strategies for fixed price contracts

 Statistics, test plans and performance
tuning



Types of change

 Change in the marketplace

 Change in the customer organization

 Change in the supplier organization

 Change in the product



Change in the marketplace

 Legal compliance

 Background user experience

 Interoperability

 Competitors and partners

 Downsizing, outsourcing, virtual enterprise
and the rise of SME

 Dehumanization of business interaction



Change in the customer
organization

 Rollout: change in business processes

 Growth and retrenchment

 Centralization and decentralization

 Mergers: not all change is improvement

 Continuous upgrades: change in context



Change in the supplier
organization

 Hand-off from development to
maintenance (and back)

 Staff rollover: immigration and emigration

 Work structure change: process and
organization

 Cost structure change

 Transfer of product support to a different
supplier



 Change in the product

 By definition, successful products are
long-lived

 Over that time, changes must be
accommodated
 Inscale and mission

 In economics

 In platform

 In available technology

 In user expectations



Conclusion

 The software engineer must not only be
adept in, and keep up-to-date with, the
rapidly changing technology in the core of
the discipline, but must maintain
awareness of current relevant technology
in related disciplines


