
dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

1

Software Engineering
Best Practices

Practical things we can all do

David Loo

IMS Health

CUSEC 2002



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

2

About IMS Health

 In Canada from 1960

 Offices in over 100 countries (HQ in
US)

 Canada’s leading supplier of health
information
– Pharmaceutical consumption rates/patterns

– Prescription estimates

– Disease & treatment patterns



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

3

About me

 BSc, MSc McGill (Physics)

 16+ years in software industry

 Held positions as software architect,
software engineer, project manager

 Matrox, Clinidata, IMS Health

 In charge of development standards &
methodology at IMS Health



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

4

Agenda

 Introduction

 Caveats

 Best practices

 Where to get more information

 Questions and Answers



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

5

Introduction

 What is Software Engineering?

 What is a Best Practice (BP)?

 How these BPs are chosen



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

6

What is Software Engineering?

 “The intelligent application of proven
principles, techniques, languages, and
tools to the cost-effective creation and
maintenance of software that satisfies
users’ needs.” [Dav95]



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

7

What is a Best Practice (BP)?

 “A principle, technique, or rule about
Software Engineering that is applicable
regardless of the development
methodology, language, or application
domain.” [Dav95]



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

8

How these BPs are chosen

 They’re proven in the field

 Personal experience

 Practical, easy to implement



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

9

Agenda

 Introduction

 Caveats

 Best practices

 Where to get more information

 Questions and Answers



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

10

Caveats

 List is not exhaustive

 Not everything has to be followed

 Not everything works all the time

 Not every BP is compatible with each
other

 Not necessarily for project managers or
leads only



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

11

Agenda

 Introduction

 Caveats

 Best practices

 Where to get more information

 Questions and Answers



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

12

Best Practices

 General BPs

 BPs for Construction

 BPs for Test

 BPs for Documentation



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

13

Best Practices

 General BPs

 BPs for Construction

 BPs for Testing

 BPs for Documentation



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

14

Quality First

 Users won’t tolerate product of poor
quality, no matter how quality is defined

 Quality cannot be “retrofitted”
 It’s better to have poor efficiency than

poor reliability
 High quality = low productivity
 Most every BP ultimately traces to

ensuring Quality in software products



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

15

Triage

 “A system used to allocate a scarce
commodity, such as food, only to those
capable of deriving the greatest benefit
from it.” [You97]

 Major application is in requirements
management



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

16

Triage (cont’d)

 Classify requirements using MoSCoW
rule: “Must have”, “Should have”, “Could
have”, “Wish to have” [Sta97]

 Focus only on “Must have”
requirements first

 Must actively & continuously manage
this with all stakeholders (Users,
development, QA, Marketing,
management)



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

17

Top 10

 List of 10 most serious risks to project

 Include status, context, possible
resolutions

 Update every week

 Raises awareness of project risks

 More timely solutions possible

 Improves visibility of progress



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

18

Configuration management

 Use CM tool (SourceSafe, etc.)
 Archive all versions of all intermediate

Artefacts (specifications, code, test-
plans, user manuals, etc.)

 Assign name/version number
 Have a baseline as early as possible
 Control ALL changes to baseline
 Track every change



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

19

Defect tracking

 Log of all defects found in all stages of
life cycle

 Include also suggestions

 Must have version number from CM tool

 Easier post-mortem analysis

 Easier metrics gathering



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

20

Have standards

 Promotes discipline

 Ensures uniformity of artefacts

 Use of common language

 Easier maintenance

 Availability of tools



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

21

Don’t follow standards

 Good methodology is one that makes
sense to the company

 Don’t have to follow every single step

 Adopting new methodology often
accompanied by huge productivity drop

 Fix fundamental problems first

 Be careful when following trends



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

22

Miniature milestones

 Milestones that are achievable in 1-2
days

 Good for crisis or project recovery

 Good for team motivation

 Increased status visibility



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

23

Avoid Waterfall methodology

 Trying to freeze requirements, design,…

 Trying to plan details from beginning to end

 Not suitable for new, unfamiliar projects

 Not adaptable to changes

 Pushes risks to tail-end of project

 Testing way too late

 Integrating way too late

 *



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

24

Use Iterative methodology

 Project goes through many iterations

 Each iteration includes usual 4 stages

 Each iteration refines requirements,
design, build, tests, …

 Each iteration adds more and more
features

 Users see value with each iteration



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

25

Iteration

6

5

4

3

2

1

Start Iteration

Business
modeling

Requirements

Analysis &
design

Implementation

Test

Deployment

End Iteration



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

26

Iterative methodology

 Embraces changes, not resists them
 Emphasis on working software, not

documents
 Creates working system as early as

possible
 Continuous testing, continuous

integration
 Risk driven: greatest risks handled first



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

27

Release early

 Define & create release process and
actual release deliverables as early in
project life-cycle as possible (iterations)

 Minimizes integration problems

 Avoids “end of build” rush



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

28

Framework group

 A group to define company-wide
common architecture, development
tools, & methodology

 Promotes reuse of common
components

 Decreases risks



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

29

Do a post-mortem

 At project end, key players analyze
every problem that occurred in project

 Goal is to document, analyze, and learn
from mistakes

 Metrics can also be gathered

 Usually takes 3-5 days

 Great benefits to future projects



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

30

Best Practices

 General BPs

 BPs for Build

 BPs for Testing

 BPs for Documentation



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

31

Captain’s Log

 Keep a log of what was done

 Can be written or electronic

 Especially important for build

 Easier recall of what or why

 Easier post-mortem analysis



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

32

Daily build

 System completely rebuild every day
(usually overnight)

 Treat it as heartbeat or synch pulse of
project [Cus95]

 Fixing broken build is given top priority

 Minimizes integration risk

 Easier defect diagnosis



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

33

Daily smoke tests

 A set of tests that exercises major
functional areas of system

 Should be automated

 Run it after each Daily Build

 Update the set as more functionality are
added to each iteration



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

34

Fix bugs as soon as found

 Don’t wait “until later”; “later” never
comes

 Fix while code is still fresh in memory

 No new features until bugs are fixed

 Greatly increases quality of product



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

35

Best Practices

 General BPs

 BPs for Build

 BPs for Testing

 BPs for Documentation



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

36

Single-step through every line
of code
 Step through code in debugger

 Step through EVERY SINGLE line of
code that was added, changed, moved



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

37

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

b

0

a

d

e

f

g

h

17

18

19

k

l

i

jn

c

m

Branch, path, and other things

 Test every branch

 Test every path



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

38

Do Inspections

 Catches high percentage of bugs

 Promotes good coding practices

 Promotes use of coding standards

 Great for people new to project or code



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

39

Best Practices

 General BPs

 BPs for Build

 BPs for Testing

 BPs for Documentation



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

40

Create a glossary & index

 Every document should have glossary
& index

 Especially important for User
documents (requirements specs, user
manuals)



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

41

Be boring

 Which is better?
– “There are three types of special commands.

Regular commands come in four varieties.”

– “There are three types of special commands.
There are four types of regular commands.”

[Dav95]



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

42

Speak the reader’s language

 Don’t put technical terms in documents
destined for Users

 Use the reader’s terminology



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

43

Agenda

 Introduction

 Caveats

 Best practices

 Where to get more information

 Questions and Answers



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

44

Where to get more information

 S.McConnell, Rapid development.
Microsoft Press, Redmond, Wash.,
1996.

 A.M. Davis, 201 principles of software
development. McGraw Hill, 1995.

 Bibliography lists 31 other books,
papers, and web sites.



dLoo 2002-Mar-08 Software Engineering Best Practices - (c) 2002 IMS
Health

45

Questions and Answers


