
Accreditation of Software

Engineering Programs by the

CSAC

Guy Tremblay
UQAM & Member of CSAC

CUSEC
January 17th, 2003

1



Overview

• What is the purpose of accreditation?

• What is CSAC?

• How does a CS/SE program become accreditated?

• Is there a core body of knowledge for software engi-

neering?

• How is this emerging BOK reflected in CSAC’s accred-

itation criteria?

2



1 Accreditation of CS and SE programs

by CSAC

“Accreditation recognizes that programs meet published,
generally accepted criteria for sound education in the dis-
cipline and provide evidence of the quality of a CS or SE
degree.”

3



Accreditation objectives:

• Promote public welfare through development of better-educated
professionals.

• Ensure that a program has a purpose appropriate for higher
education and has resources and services sufficient to accomplish
its purpose.

• Foster a cooperative approach to IT education involving indus-
try, government, and educators to meet needs of society.

• Provide opportunity of improvement to educational institutions
(strengths and weaknesses).

4



CSAC

= Computer Science Accreditation Council
• Established in the 1970s
• Autonomous body of Canadian Information Processing Society

(CIPS)

Role and objectives:

• Formulate and maintain high educational standards for CS and
SE programs, including definition of accreditation criteria.

• Review and accredit undergraduate CS and SE programs at
Canadian universities on a voluntary basis.

• Avoid rigid standards to prevent conservatism and encourage
planned experimentation.

5



2 Procedures and criteria for CSAC ac-

creditation

Overview of accreditation process

1. University fills a detailed questionnaire.
2. Accreditation team (three persons) visits university (two days).
3. Draft report is prepared by visiting team.
4. Draft report is reviewed by university.
5. Council approves report and gives accreditation decision.

Fully confidential process . . . until accreditation is obtained.

6



Criteria (report and visit)

• Control and organization of institution;
• Students (admission, standing, graduation);
• Faculty (morale and calibre, teaching load, research funding);
• Resources (financial, physical, support staff, library);
• Curriculum.

7



Curriculum

• Breadth and depth:
– 15 CS/SE courses

(at least one course in each of six key sub-areas).
– 5 mathematics courses.
– 10 courses which are neither CS/SE nor mathematics.

• Development of oral and written communication.

• Professionalism (social, ethical and legal issues).

• Presence of a significant practical component.

8



3 Body of knowledge for SE

The emergence of a profession requires the existence of a well-docu-
mented core body of knowledge (BOK).

SE’s BOK still immature and evolving, yet there has been three
major efforts at defining a BOK for SE:

1. SWE-BOK
2. Guide to the SWEBOK
3. SEEK

9



3.1 SWE-BOK

• Triggered by an FAA initiative to “improve the SE competencies
of its technical and management staff” . . . at which point they
were unable to find an existing SE BOK.

• SEI Technical Report (1999) : “A Software Engineering Body of
Knowledge (Version 1.0)”.

10



I. Computing

fundamentals

•Algo. and

data str.

•Comp. arch. •Math. foun-

dations

•Op. syst. •Prog. lang.

II. Software

product eng.

•Requirements •Design •Coding

•Testing •Operation

and maint.

III. Software

management

•Project •Risk •Quality

•Configuration •Acquisition

IV. Software

domains

•AI •DB •HCI

•Num./symb.

comput.

•Simulation •Real-time

11



3.2 Guide to the SWEBOK

• Project sponsored by IEEE Computer Society and corporate
sponsors (Raytheon, SAP, Rational, Mitre, NRC, NIST, etc.).

• Goal was to identify generally accepted core SE knowledge for
people with five (5) years experience.

• Two year (major) effort lead (2001) to a “Guide to the Software
Engineering Body of Knowledge (Trial Version 1.00)”.

• Used a bottom-up approach to the identification of the major
Knowledge Areas (KAs).

12



Ten major KAs for SE:

1. Software requirements
2. Software design
3. Software construction
4. Software testing
5. Software maintenance
6. Software configuration management
7. Software engineering management
8. Software engineering process
9. Software engineering tools and methods

10. Software quality

13



List of Related disciplines:

• Computer science

• Mathematics

• Project Management

• Computer and systems eng.

• Management and Management sciences

• Cognitive sciences and human factors

14



3.3 SEEK

• Sponsored by IEEE Computer Society and ACM

• Spin-off of CC-2001 : Computing Curricula Soft. Eng. (CCSE)

• So far :

– Set of guiding principles;

– Overall structure for SE Education Knowledge Areas
(SEEK Areas);

– Draft chapters of curriculum and KAs.

15



Some key CCSE principles (a few out of 11) :

• SE draws its foundations from a wide variety of disciplines.

• Rapid evolution of field ⇒ need for ongoing review process of
curriculum.

• Guidance of SE curricula must be based on an appropriate def-
inition of SE knowledge.

16



Overall structure of SEEK Areas:

1. Fundamentals : math., comp., eng., modeling
2. Professional practice : group dynamics, comm. skills, prof.
3. Software requirements
4. Software design
5. Software construction
6. Software verification and validation
7. Software evolution
8. Software process
9. Software quality

10. Software management
11. Systems and application specialties

17



4 Improving the CSAC’s SE criteria

The current SE’s criteria are “pre-SWEBOK” and can be improved.

Guiding “principles”:

• The SE BOK is still evolving ⇒ we should not be too specific.

• The SE criteria should be a superset of those for CS.

• A SE program should cover each of the key KAs, not necessarily

with a specific course for each KA but clearly not with a single course.
=> For an undergraduate program (with CS core), a number of SE

KAs can be merged.

• A “practical” component must be present for some application
domains (SE is not done in the abstract).

18



The proposed areas for the SE part of curriculum:

1. Software requirements

2. Software design and architecture

3. Software construction and maintenance

4. Software testing and quality

5. Software management and process

6. Application domains (embedded, real-time, distributed, HCI, DB)

19



Other CS curriculum criteria must also be satisfied:

• CS courses in each of the following areas: algorithms and data

structures, programming languages, systems software, computer ele-

ments and architecture, theoretical foundations.

• Mathematics (mostly discrete) courses.

• Courses which are neither CS/SE nor mathematics.

• Development of oral and written communication.

• Aspects of professionalism, social implications of computing, eth-
ical and legal issues.

• Presence of a significant practical component.

20



5 Conclusion

• The core of a CSAC’s accreditated SE program remains in CS.

• Major recent efforts at defining the SE BOK should be taken
into account . . . but not too rigidly as BOK is still evolving.

• Revision of CSAC’s criteria still remains to be approved by CIPS
(after appropriate reviews).

• Final wish: let’s hope Canadian engineers and computer sci-
entists, as in other countries, can better cooperate to improve the
emergence and professionalisation of this important field.

21


