Can the Means Justify the End?
Saving Programs from Prog===mers Programming

Bran Selic
bselic@ca.ibm.com

IBM Distinguished Engineer
IBM Canada

|



AN alanI e

In Lisle, lllinois:

ring road

AT&T Lab
Building

¢ Quiz question: How is this similar to modern-day software?

IBM Software Group | software




ANOIHETRSLONS

+ The following type of code fragment was included in the program for traffic
routing in long distance telephone networks

switch (caselIndex) {
case ‘A’ : route = routelA;

break;

Missing “break”

;oute
statement!

route

break;

.}

When this code ran, the entire Northeast US lost its long-distance phone
service (banks, government institutions, hospitals, businesses...)

* The estimated damage was in the hundreds of millions of dollars

IBM Software Group | software




"New FBI Software May Be Unusable"
Los Angeles Times (01/13/095);
A central pillar of the FBI's computer system overhaul, which
has already cost nearly half a billion dollars and missed its
original deadline, may be unusable, according to reports from
bureau officials. The prototype ... software developed ... at a

cost of about $170 million has been characterized by officials
as unsatisfactory and already out of date; sources indicate
that scrapping the software would entail a roughly $100 million
write-off while Sen. Judd Gregg ... says the software's failure
would constitute a tremendous setback. ... The computer
system overhaul, which has cost $581 million thus far, was
tagged as a priority by members of Congress ...

IBM Software Group | software




VYV HYASWV NG RGO ECIISOIWATEISOMI i CLII 1

A: COMPLEXITY!

Modern software is reaching levels of complexity encountered in biological
systems; sometimes comprising systems of systems each of which may
include millions of lines of code

IBM Software Group | software




¢ [From: F. Brooks, “The Mythical Man-Month”, Addison Wesley, 1999]
+ Essential complexity

= inherent to the problem
= cannot be eliminated by technology or technique
= e.g., designing a workable network routing system

* Accidental complexity

= introduced by a technology (tools) or technique

= e.g., building construction without using power tools

* Modern software development suffers from an excess of
accidental complexity

IBM Software Group | software




AoV 00 eSS OIIIVATES

SC_MODULE (producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // kick-start
void generate data ()

{

for(int i1 =0; i <10; i++) {

outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{

SC_METHOD (generate_data);
sensitive << start;}};
SC_MODULE (consumer)

{

sc_inslave<int> inl;

int sum; // state variable
void accumulate (){

sum += inl;

cout << “Sum = “ << sum <<

SC_CTOR (consumer)
{
SC_SLAVE (accumulate, inl);
sum = 0; // initialize

14
SC_MODULE (top) // container
{
producer *Al;
consumer *Bl;
sc_link mp<int> linkl;
SC_CTOR(top)
{
Al = new producer(“Al”);
Al.outl(linkl);
Bl = new consumer(“Bl”);
Bl.inl(linkl);}};

Can you spot the
architecture?

IBM Software Group | software




wraldNISHvIouel

«Sc_methody «SC_Slavey

producer - consumer

Can you see it now?

IBM Software Group | software




SIEARIENHENAT:

SC_MODULE (producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // kick-start
void generate data ()

{

for(int i1 =0; i <10; i++) {

outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{

SC_METHOD (generate_data);
sensitive << start;}};
SC_MODULE (consumer)

{

sc_inslave<int> inl;

int sum; // state variable
void accumulate (){

sum += inl;

cout << “Sum = “ << sum <<

SC_CTOR (consumer)
{
SC_SLAVE (accumulate, inl);

sum = 0; // initialize
14

SC_MODULE (top) // container
{

producer *Al;

consumer *Bl;

sc_link mp<int> linkl;
SC_CTOR(top)

{

Al = new producer(“Al”);
//Al.outl(linkl);

Bl = new consumer(“Bl”);
//Bl.inl(1linkl);}};

Can you see where?

IBM Software Group | software




=> Clearly, models can be useful in software development

How useful can they be?

«Sc_methody «SC_Slavey

producer - consumer

Can you see it now?

IBM Software Group | software




Usa gilllodals i 2egingaie

*Probably as old as engineering (c.f., Vitruvius)

IBM Software Group | software




ENYINEERNYNIOUE]S

* Engineering model:

A reduced representation of some system that highlights the
properties of interest from a given viewpoint

Digitizer System

Modeled system Functional Model

+ \We don't see everything at once

+ We use a representation (notation) that is easily understood for
the purpose on hand

12 IBM Software Group | software




HOWAV OUEISTareNISEUNNNENYINEETING

*To help us understand complex systems
= Useful for both requirements and designs

= Minimize risk by detecting errors and omissions early in the

design cycle (at low cost)

» Through analysis and experimentation
* Investigate and compare alternative solutions

= To communicate understanding
« Stakeholders: Clients, users, implementers, testers, documenters, etc.

*To drive Implementation
= The model as a blueprint for construction

IBM Software Group | software




SETUIENYINEENNYIWIOUE]S

* Abstract

= Emphasize important aspects while removing irrelevant ones
+ Understandable

= Expressed in a form that is readily understood by observers
* Accurate

= Faithfully represents the modeled system
* Predictive

= Can be used to answer questions about the modeled system

* Inexpensive
= Much cheaper to construct and study than the modeled system

Useful engineering models must satisfy all of these
characteristics!

IBM Software Group | |Rationals software




BACKAOIOUIRSOIIWANENI 0t el

=~  SC_CTOR(consumer

{ {
sc_outmaster<int> outl; SC_SLAVE (accumulate, inl);
sc_in<bool> start; // kick-start sum = 0; // initialize

14
SC_MODULE (top) // container
{
producer *Al;
consumer *Bl;
sc_link mp<int> linkl;
SC_CTOR(top)
{
Al = new producer(“AlY%);
Al.outl(linkl);
Bl = new consumer

inl (linkl);}

void generate data ()

{
for(int i =0; i <10; i++) {
outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{
SC_METHOD (generate_data);

sensitive << start;}};
SC_MODULE (consumer)

{

sc_inslave<int> inl;

int sum; // state variable
void accumulate (){

«sc_method» ' «sc_slavey
__ producer . H consumer

IBM Software Group | software




IHENVI oG eIEDHVENDEVEIOPHIENIAPPIOHGH

SC_MODULE (producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // kick-start
void generate data ()

{

for(int i1 =0; i <10; i++) {

outl =i ; //to invoke slave;}

}
SC_CTOR (producer)

{
SC_METHOD (generate_data);

sensitive << start;}};
SC_MODULE (consumer)

{

sc_inslave<int> inl;

SC_CTOR (consumer)
{
SC_SLAVE (accumulate, inl);

sum = 0; // initialize
14

SC_MODULE (top) // container
{

producer *Al;

consumer *Bl;

sc_link mp<int> linkl;
SC_CTOR(top)

{

Al = new producer(“Al”);
Al.outl(linkl);

Bl = new consumer(“Bl”)
Bl.inl(linkl);}};

int sum; // state variable

void accumulate () {

sum += inl; [ ]
cout << “Sum = “ << sum <<

«Sc_method» » «sc_link_mp» «SC_Slavey
producer link1

_ consumer

TBM Sottware Group | software




VOUEINYNSHESOUIAMMNYNENGIEYES

+ Cover different ranges of abstraction

A high A

A,." .statecharts,
interaction

diagrams, :
architectural MOde“ng

Level Of structure, etc. v Languages
Abstraction (UML,...)

Programming

Languages I

(C/C++, Java, ...) ALOZdata layout,

arithmetical
and logical
operators,
etc.

| ~.;. ‘.: h@%’
IBM Software Group | ‘Rationals software




VIOUEISHEIENRRENIELall

Modeling

Level of Languages
Abstraction (UML,...)

Programming
Languages

Implementation (C/C++, Java, ...)
Language

IBM Software Group | software




VIOUEIREVOI LGN RRETNEment

void generate_data()
«sc_method» producer {for (int i=0; i<10; i++)

producer O\/ foutt =i;}}
[NotStarted]

producer

start

i s
[NotStarted] Started \

start

\ 4
[ Started ]

*Models can be refined continuously until the application is fully
specified = the model becomes the system that it was modeling!

IBM Software Group | software




IHENREMaIkan) ESASPECISIOIRS OIVATE!

Software has the unique property that it allows us to evolve
abstract models into full-fledged implementations without
changing the engineering medium, tools, or methods!

It also allows us to generate abstract views directly and
automatically from the implementations

=> This ensures perfect accuracy of software models; since the model
and the system that it models are the same thing

software



o)

>y

IWVElCy

SEYONUNVIEYENHYSICAIAWSIEACHON

Private
Branch
Exchange (PB

Software can make
an abstraction into
an observable and
controllable reality!

“telephone call 3-4”

State

Set of participants
Duration

Billing rate

addParticipant(line)

IBM Software Group | software




VIOU eI AVERRSIYIEIOIDEVEI OPMENNIVIDID)

* An approach to software development in which the focus and primary
artifacts of development are models (as opposed to programs)

+ Based on two time-proven methods

(1) ABSTRACTION (2) AUTOMATION

«sc_module» «sc_module»
Realm of | producer ] | producer ]
il o out1 Realm of

start out1 start

modeling tools
languages I E?
X

SC_MODULE (producer) SC_MODULE (producer)
{sc_inslave<int> inl; {sc_inslave<int> inl;
int sum; // int sum; //

void accumulate ()({ void accumulate ()({
sum += inl; sum += inl;

cout << “Sum = “ << sum cout << “Sum = “ << sum
<< endl;} << endl;}

IBM Software Group | software




IV PESIOIAULOMAUOHRVILHINVIIDL

+ Computer-based model transformations
= Code generation, pattern application, abstraction,...

+ Computer-based validation
= Formal methods (qualitative and quantitative)

+ Computer-based testing
= Automated test generation, setup, and execution

+ Computer-based model execution (simulation)

= Particularly execution of abstract and incomplete models
-- when most of the important decisions are made

+ Computer-supported reuse
= Using computers to store, find, and retrieve re-usable components

IBM Software Group | software




URIE 2,04 =10 MIDE) Ezplejtpzie)a

UML 1.5
DIVIEPAN @ CLIGNISEMANTICS)

UML 1.3 (extensibility)

UML 1.1 (OMG Standard)

Rumbaugh | Booch | Harel Jacobson

Foundations offOONNygaard; Goldherg, Vieyer,
Stroustrup; Harel; Wirfs=Brock; Reenskaugj...)

IBM Software Group | software




Lisle, lllinois:

ring road

AT&T Lab
Building

* The new design team was unaware of the high-level view

IBM Software Group | software




ATCHItECTUTI N ECAYANISOIWANE

* The gradual divergence of a program from its intended
architecture caused by successions of seemingly minor
code modifications

¢ Ultimate causes
= |nability to identify architectural intent

= |nability to enforce architectural intent

* Typically occurs during low-level maintenance work

IBM Software Group | software




UMIE 2.0 Nrepjis

The Design: |

sender:Fax receiver:Fax

FaxCall

The Implementation (with automatic code generation):

fl := create(FaxCall);[:iL

sender:Fax i i receiver:Fax

f1:FaxCall

IBM Software Group |




EUIPAUTOMALICNCO U ENGENS]

+ Complete code generation available in specific domains
+ Efficiency

= performance and memory utilization:
within £5-15% of equivalent manually coded system

* Scalability

= compilation time (system and incremental change):
within 5-20% of manual process

eliminates need to manually change generated code

= gystem size:

« Complete systems in the order of 4MLOC have been constructed using full code
generation

» Teams of over 400 developers working on a common model

IBM Software Group | software




VID DN ESACLICE

* The following large-scale industrial products were all developed
using complete automatic code generation:

Automated doors, Base Station, Billing (In Telephone Switches), Broadband Access,
Gateway, Camera, Car Audio, Convertible roof controller, Control Systems, DSL, Elevators,
Embedded Control, GPS, Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture (Simulation), DNA
Sequencing, Industrial Laser Control, Karaoke, Media Gateway, Modeling Of Software
Architectures, Medical Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,
Automated Concrete Mixing Factory, Operations And Maintenance, Optical Switching,
Industrial Robot, Phone, Private Branch Exchange (PBX), Radio Network Controller,
Routing, Operational Logic, Security and fire monitoring systems, Surgical Robot,
Surveillance Systems, Testing And Instrumentation Equipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing, Wireless Phone

IBM Software Group | software




T2 Avalieziion of YD)

+ |f MDD can help us construct more reliable software
faster, why isn’t everyone doing it?

+ The most obstinate resistance to MDD comes from
software practitioners — one of its main intended
beneficiaries

+ Reasons:

mmature or missing tools

nadequate results (not fast enough, too big,...)

_ack of control over the implementation

Paradigm shift

Culture: is the medium the message?

IBM Software Group | software




e UManISIHENORSOWAlE:

* The ultimate objective of any technology is to be useful
to humans

* Yet, technologists often expect humans to adapt to
technologies

= E.g., Bhopal tragedy (1984) — training vs design

= E.g., the $1B missing “break” statement incident

* The unparalleled flexibility and adaptability of software
makes it an ideal medium for constructing much more
human-friendly technologies

+ ...starting with the technology used to construct
software itself

IBM Software Group | software




Goneltsions

* We cannot keep trying to develop 215t century software
using technological frameworks devised for solving
1950s’ problems

+ New technologies, such as MDD, based on time-proven
trusted methods (abstraction, automation), provide a
clear way forward

+ But, their success depends on an awareness of and a
dedication to the human users for whom all software is
ultimately constructed

= The medium is not the message, the means are not the end

* The Fortran box has been finally breached and it is our
responsibility to reach outside

IBM Software Group | software




