
1

Some Interesting Applications
of Theory

PageRank
Minhashing

Locality-Sensitive Hashing

2

PageRank

 The thing that makes Google work.
 Intuition: solve the recursive equation:

“a page is important if important pages
link to it.”

 In high-falutin’ terms: importance =
the principal eigenvector of the
stochastic matrix of the Web.
  A few fixups needed.

3

Stochastic Matrix M of the Web

i

j
Suppose page j links to n pages, including i

1/n

Expresses how “importance” flows around
the Web. Equivalent to following “random
walkers.”

4

Example: The Web in 1839

Yahoo

M’soft Amazon

y 1/2 1/2 0
a 1/2 0 1
m 0 1/2 0

y a m

M

5

The Google Idea

 Imagine many random walkers on the
Web.

 At each “tick,” each walker picks an
out-link at random and follows it.

 Distribution of walkers v becomes M v
after one tick.

 Compute M 50v (approximately 50).

6

The Walkers

Yahoo

M’soft Amazon

7

The Walkers

Yahoo

M’soft Amazon

8

The Walkers

Yahoo

M’soft Amazon

9

The Walkers

Yahoo

M’soft Amazon

10

In the Limit …

Yahoo

M’soft Amazon

11

Real-World Problems

 Some pages are “dead ends” (have no
links out).
  Such a page causes importance to leak out.

 Other (groups of) pages are spider traps
(all out-links are within the group).
  Eventually spider traps absorb all importance.

12

Microsoft Becomes a Dead End

Yahoo

M’soft Amazon

13

Microsoft Becomes a Dead End

Yahoo

M’soft Amazon

14

Microsoft Becomes a Dead End

Yahoo

M’soft Amazon

15

Microsoft Becomes a Dead End

Yahoo

M’soft Amazon

16

In the Limit …

Yahoo

M’soft Amazon

17

Microsoft Becomes a Spider Trap

Yahoo

M’soft Amazon

18

Microsoft Becomes a Spider Trap

Yahoo

M’soft Amazon

19

Microsoft Becomes a Spider Trap

Yahoo

M’soft Amazon

20

In the Limit …

Yahoo

M’soft Amazon

21

Topic-Specific Page Rank

 Goal: Evaluate Web pages not just
according to their popularity, but by
how close they are to a particular topic,
e.g. “sports” or “cooking.”

 Allows search queries to be answered
based on interests of the user.
  Example: Query batter wants different

pages depending on whether you are
interested in sports or cooking.

22

Teleport Sets

  Assume each walker has a small
probability of “teleporting” at any tick.

  Teleport can go to:
1.  Any page with equal probability.

  To avoid dead-end and spider-trap problems.

2.  A topic-specific set of “relevant” pages
(teleport set).
  For topic-specific PageRank.

23

Example: Topic = Software

 Only Microsoft is in the teleport set.
 Assume 20% “tax.”

24

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

Dr. Who’s
phone
booth.

25

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

26

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

27

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

28

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

29

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

30

Only Microsoft in Teleport Set

Yahoo

M’soft Amazon

31

New Topic: Similarity Search

 Many “objects” that populate
overlapping sets.

 Find the pairs of sets that are “similar.”
  Jaccard similarity of sets = size of

intersection divided by size of union.

32

Example: Jaccard Similarity

3 in intersection.
8 in union.
Jaccard similarity
 = 3/8

33

Applications

1.  Collaborative Filtering : Represent
Amazon customers by the sets of
products they buy.
  Recommend what similar customers

bought.

2.  Similar Documents : Represent pages by
their sets of k-shingles = strings of k
consecutive characters.
  Similar pages could be plagiarism.

34

When Is the Problem Interesting?

1.  When the sets are so large or so
many that they cannot fit in main
memory.

2.  When there are so many sets that
comparing all pairs of sets takes too
much time.

35

Key Ideas

1. Minhashing : (Edith Cohen, Andrei
Broder) Construct small signatures for
sets so that the Jaccard similarity of sets
can be determined from the signatures.

2.  Locality-Sensitive Hashing : (Rajeev
Motwani, Piotr Indyk) Focus on pairs of
(likely) similar sets without looking at all
pairs.

36

Minhashing as a Matrix Problem

 Think of sets represented by a matrix
of 0’s and 1’s.

 Row = element.
 Column = set.
 1 means that element is in that set.

37

Example

 C1 C2

 a 0 1
 b 1 0
 c 1 1 Sim (C1, C2) =
 d 0 0 2/5 = 0.4
 e 1 1
 f 0 1

*

*

*

*

*

*

*
C1 = {b, c, e}
C2 = {a, c, e, f}

38

Four Types of Rows
 Given columns C1 and C2, rows may be

classified as:
 C1 C2

 a 1 1
 b 1 0
 c 0 1
 d 0 0

 Also, a = # rows of type a , etc.
 Note Sim (C1, C2) = a /(a +b +c).

39

Minhashing

 Imagine the rows permuted randomly.
 Define “hash” function h (C) = the

number of the first (in the permuted
order) row in which column C has 1.

 Use several (100?) independent hash
functions to create a signature.

40

Minhashing Example

Input matrix

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1 3

4

7

6

1

2

5

Signature matrix M

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

2

6

7

3

1

2 1 2 1

41

Surprising Property

 The probability (over all permutations
of the rows) that h (C1) = h (C2) is the
same as Sim (C1, C2).

 Both are a /(a +b +c)! Why?
  Look down columns C1 and C2 (in

permuted order) until we see a 1.
  If it’s a type-a row, then h (C1) = h (C2).

If a type-b or type-c row, then not.

42

Finding Similar Sets

 We can use minhashing to replace sets
(columns of the matrix) by short lists of
integers.

 But we still need to compare each pair
of signatures.

 Example: 20 million Amazon
customers; 2*1014 pairs of customers
to evaluate.

43

Locality-Sensitive Hashing

  What we want seems impossible: map
signatures to buckets so that

1.  Two similar signatures have a very good
chance of appearing in the same bucket.

2.  If two signatures are not very similar,
they probably don’t appear in one
bucket.

  Then, we only have to compare
bucket-mates (candidate pairs).

44

The LSH Trick

 Think of the signature for each column
as a column of the signature matrix S.

 Divide the rows of S into b bands of r
rows each.

45

Partition Into Bands

Matrix S

r rows
per band

b bands

46

Partition into Bands --- (2)

 For each band, hash its portion of each
column to a hash table with many buckets.

 Candidate column pairs are those that hash
to the same bucket for ≥ 1 band.

 Tune b and r to catch most similar pairs,
but few nonsimilar pairs.

47

Matrix S

r rows b bands

Buckets

48

 LSH --- Graphically

  Example Target: All pairs with Sim > t.
 Suppose we use only one hash function:

 Partition into bands gives us:
1.0

Sim
Prob.

1.0

t 1.0
Sim

Prob.

1.0

0.0

Ideal

Sim
0.0

Prob.

1.0

s 1.0

1 – (1 – sr)b

0.0

t

t

t ~ (1/b)1/r

Actual

49

Summary of Minhash/LSH

1.  Represent the objects you are
comparing by sets (ad-hoc method).

2.  Represent the sets by signatures
(Minhashing).

3.  Use LSH to create buckets; candidate
pairs are those in the same bucket.

4.  Evaluate only the candidate pairs.

50

Experience

1.  Finding news articles with the same
source.

2.  Entity resolution : finding customers
shared by two businesses.

51

News Sources

 Two members of the database group at
Stanford were asked by the PoliSci
Dept. to examine 1.5 million news
articles and identify those that were
really the same synticated article
published by different newspapers.
  Each newspaper “decorates” the article

with its own material, e.g. masthead.

52

News Sources – (2)

 They developed their own algorithm
and reported it to the group.

 I suggested “minhashing + LSH.”
 They reimplemented and found that

minhash+LSH was faster and more
accurate for all but very high degrees
of similarity.

53

Matching Customer Records

 I once took a consulting job solving the
following problem:
  Company A agreed to solicit customers for

Company B, for a fee.
  They then had a parting of the ways, and

argued over how many customers.
  Neither recorded exactly which customers

were involved.

54

Customer Records – (2)

 Company B had about 1 million records
of all its customers.

 Company A had about 1 million records
describing customers, some of which it
had signed up for B.

 Records had name, address, and
phone, but for various reasons, they
could be different for the same person.

55

Customer Records – (3)

 Step 1: design a measure of how
similar records are:
  E.g., deduct points for small misspellings

(“Jeffrey” vs. “Geoffery”), same phone,
different area code.

 Step 2: score all pairs of records; report
very similar records as matches.

56

Customer Records – (4)

 Problem: (1 million)2/2 is too many pairs
of records to score.

 Solution: A simple LSH.
  Three hash functions: exact values of

name, address, phone.
• Compare iff records are identical in at least one.

 Misses similar records with a small
difference in all three fields.

57

Customer Records – Aside

 We were able to tell what values of the
scoring function were reliable in an
interesting way.
  Identical records had a creation date

difference of 10 days.
 We only looked for records created within

90 days, so bogus matches had a 45-day
average.

58

Aside – (2)

 By looking at the pool of matches with
a fixed score, we could compute the
average time-difference, say x, and
deduce that fraction (45-x)/35 of them
were valid matches.

 Alas, the lawyers didn’t think the jury
would understand.

